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A NEUTRON MONITOR FOR
SIMULTANEOUS MEASUREMENT OF
FLUENCE AND DOSE EQUIVALENT

by

Robert F. Dvorak and Norman C. Dyer

ABSTRACT

A neutron detector which has application as both an
area monitoring instrument and a criticality dosimeter is
under development at Argonne National Laboratory. The de-
tector simultaneously measures both dose equivalent and
fluence from an exposure to fast neutrons.

The moderator consists of a 12-in.-diameter, alu-
minum-encased paraffin sphere. The neutron sensors are
nine thermal activation foils located within the moderator.
The neutron fluence is determined by activation of six foils
symmetrically located one inch below the surface of the mod-
erator. For this foil array, the summed activity is nondi-
rectional and proportional to the fluence within 10 percent
over the investigated energy range from 20 keV to 2.3 MeV.
The neutron dose equivalent is determined from activation of
three symmetrically interlocked foils at the center of the
moderator, and the summed activity is proportional to the
dose equivalent within 75 percent over the same energy range.

A response correction technique is described which,
for monoenergetic neutrons, brings the dose equivalent to
within about 10 percent. The average sensitivity of the mon-
itor over the stated energy range, using indium foils, is
76 cpm per mrem/hr and 25 cpm per n/cmz—sec at the end
of one half-life exposure at uniform radiation level.

INTRODUCTION

An examination of the neutron thermalization characteristics of a
spherical hydrogenous moderator has disclosed several relationships ame-
nable to exploitation in the design of a simple yet versatile neutron detector.
Some of these relationships are new and some have been explored by others.
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Pertinent considerations leading to the design concept for the instru-
ment include the following:

1. The thermal-flux-density distribution in a hydrogenous moder-
ator has been studied by a number of investigators under various moderator -
sensor geometries.l'6 In all cases, a similar distribution was seen. Char-
acteristically, if the moderator is sufficiently large, the thermal flux density
increases from some nominal value at the front surface of the moderator to
a maximum at an energy-dependent depth; thereafter, it decreases with depth
to the rear surface. Calculations of our own, utilizing multigroup diffusion
theory, show the same characteristics for spherical detectors. In addition,
these calculations indicate that the response of a 12-in.-diameter sphere
having a symmetrical array of sensors located about one inch below the sur-
face is fairly independent of incident neutron energy. (These calculations are
currently being revised to improve accuracy and are not considered further
in this report.)

2. Several investigator s”® have shown that a polyethylene sphere of
about 10-in. diameter having a small sensor at the center exhibits a varia-
tion of sensitivity with incident neutron energy approximating the currently
accepted variation of dose equivalent with neutron energy. Our work indi-
cates that the same result can be achieved for a 12-in. sphere and a 2-in.
sensor.

3. A spherical moderator with a central sensor is inherently non-
directional. The same moderator having a large number of symmetrically
distributed noncentral sensors with a summed response also is inherently
nondirectional.

4. If measurements are made in a neutron radiation field utilizing
two detectors having substantially different energy responses, one can de-
termine an effective neutron energy for this field. It is easy to postulate
energy spectra for which this effective energy would be quite misleading. If
used cautiously, however, it can have direct value in biological irradiation
experiments,* and many radiation protection situations.? One also may uti-
lize the effective neutron energy to determine a suitable sensitivity correc-
tion for a detector with a nonideal response curve.

5. The use of a neutron moderator with thermal sensors affords the
instrument designer a valuable flexibility. One can select the sensor accord-
ing to the type of source and the information desired. Active sensors such
as GM tubes wrapped in silver foil may be used for pulsed sources, and
boron trifluoride or lithium iodide counters for continuous emission sources.
Passive sensors, such as foils of indium, dysprosium, cobalt, and gold, may
be used with any source and for work involving a wide range of integration
times.
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DETECTOR

A sketch of the geometry chosen for the sensors is shown in Fig. 1.
Since the type of sensor is in principle unimportant, passive foils are shown
for simplicity. The dosimetric array is a symmetrical group of three sen-
sors at the center of the moderator. The flat-response array consists of
six sensors equidistant from the center and lying on the rectangular coor-
dinate axis.

Figure 2 shows the passive foil detector as finally fabricated. It
consists of two 12-in.-diameter, hemispherical aluminum shells which have
been filled with paraffin moderating material. On each of the three coor-
dinate axes, Lucite holders and plugs provide externally accessible posi-
tions for the six 2-in.-diameter thermal activation foils comprising the
flat-response array. The foils are located one inch below the surface of
the moderator and 5 in. from the center.

235-924 235-916

Fig. 1. Sensor Geometry for Spherical Fig. 2. Neutron Detector Fully Assembled
Foil Neutron Detector and Ready for Use

Figure 3 shows the same detector with the hemispheres separated
for access to the central dosimetric array. A slotted Lucite cylinder is
used to hold three foils symmetrically interlocked in such a manner that
there is one foil in each of the three rectangular coordinate planes of the
sphere.
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235-914

Fig. 3. Neutron Detector with Hemispheres Separated for Access to Central Array

EXPERIMENTAL RESULTS

The response of the detector was determined experimentally in the
energy range from 20 keV to 2.3 MeV through use of a Van de Graaff proton
accelerator and the Li7(p, n)Be’ reaction. The thermal activation foils were
of indium and dysprosium, 2 in. in diameter and 10 mils thick.

Exposures were made at a distance of 105 cm from the target, and
each exposure was approximately one hour in duration. The energy-
dependent fluences ranged between 300 and 2,000 n/cmz-sec. At each energy
point, a determination of the scattered-neutron background was made by
interposing a lé%-in.-long tapered shadow cone between the target and
source, and exposing for the same length of time at a comparable neutron
fluence. Correction factors for background ranged between 6 and 14 percent
of the total (cone removed) activity. For energies of 70 keV and above, ex-
posures were made at 0° to the direction of the proton beam. At lower
energies, it was necessary to expose at an angle of 60° to the direction of
the proton beam to achieve the desired energy stability.

The neutron flux was measured with a Precision Long Counter built
in accordance with the DePangher design developed at Hanford.” Earlier
experiments indicated that use of the conventional +60° experimental ar-
rangement (with the Long Counter monitoring the beam at -60° during de-
tector exposure at +60°) resulted in a prohibitive background due to scattering
off the Long Counter and 0° beam scatter from environmental materials.






Calibrations were, therefore, achieved by alternating between Long Counter

the detector exposures at the same physical position and normalizing with
integrated proton beam current.

To study the extent of variation in sensitivity due to rotational ori-
entation of the detector with respect to the incident neutron beam, at least
two orientations were tried at each energy. Figure l shows that there are
two geometrically extreme cases of incidence. The first is that in which a
radial line between the source and the detector center passes through a sen-
sor, and is referred to as "head-on." The second is where all sensors are
equidistant from this line (and its backward extension) and is referred to as
"trisection." A third, intermediate case exists when two sensors are equi-

distant from this line and lie in a common plane; this is referred to as a
"bisection."

Each foil was counted for beta activity in a 27 gas-flow proportional
counter. The counting rates then were corrected back to the time at which
the exposure ended, normalized to an exposure time of one half-life for the
isotope of interest (54.2 min for indium-116m; 139.2 min for dysprosium-
165), and also normalized to a neutron fluence of 1 n/cmz-sec.

The results for the more comprehensively exposed indium foils are
shown in Fig. 4. The most significiant information in this plot is the nature
and magnitude of the directional effect.
For the outside array, any directional
COUNTS/MINUTE FOR 54.2 MIN EXPOSURE AT UNIT FLUX § difference is masked by statistical

e R RRE spread in the points; variations due to
direction of incidence appear to be not
greater than +5 percent. A different
and unexpected situation occurs for the
center array: a directional effect of
about +10 percent is seen. Since the
head-on orientation showed highest
sensitivity, it is believed that the low
hydrogen density (compared to paraffin)

100

FOIL ACTIVITY —counts/min

s
READ-ON. ; i of the Lucite foil cylinders may be

responsible.

e % % Although the data are not pre-
NEUTRON ENERGY-MeV sented here, the individual activity of
235-920 each of the six outer foils varied

greatly. It was possible to define not

e 1l only the primary neutron beam direc-

as Experimentally Determined, ) = 5
Showing Sensitivity Variation tion, but also the general direction of

with Neutron Energy and scattered neutron sources by inspec-
Detector Orientation tion of the activation data.
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Figure 5 shows the response of the outer foil array, obtained from
indium and dysprosium data averaged over the three incidence orientations.
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Fig. 5. Summed Outer Foil-array Activity,
Showing Sensitivity Variation with
Energy and Foil Material

In the energy range tested, the 1/E-
averaged indium sensitivity was

24.8 cpm for a unit fluence irradia-
tion, and the l/E-averaged dysprosium
sensitivity 49.6 cpm. In general, the
"flatness" was about 10 percent in

the tested energy interval, and it
appears that the sensitivity will de-
crease at both lower and higher
energies.

Figure 6 shows the response
of the inner foil array, again obtained
from incidence-average indium and
dysprosium data. Over the same
energy range, the indium sensitivity
ranged between 56 and 132 for a l/E-
averaged sensitivity of 76.0 cpm per
mrem/hr, while the dysprosium
ranged between 110 and 260 for a 1/E
average of 147 cpm per mrem/hr. A
comparison of the curves obtained in

this work with dosimetric data of Bramblett et ;3,_1.,7 and Hankins,® as shown
in Fig. 7, indicates that the indium sensitivity will rise with decreasing
energies to a maximum of about 260 cpm per mrem/hr, and thereafter will

decrease to about 100 cpm per mrem
hr in the epithermal region.

Since the outer sensor array

does not have an absolutely flat re-

sponse and the inner array hasonly a

crude approximation to dosimetric re-

sponse, it is desirable to make use of
the self-correcting feature inherent in
the detector. A plot of the ratio of

outer array activity to inner arrayac-

tivity as a function of energy is shown

in Fig. 8.

To determine fluence and dose
equivalent accurately, it is only nec-

essary to compute the ratio of summed
foil activities in each of the two foil

arrays, use this ratioto determine the
effective neutron energy from Fig. 8,
and then apply this energy tothe curves

1000

SUMMED COUNTS/MIN FOR ONE HALF
il LIFE EXPOSURE TO UNIT DOSE RATE
Hms Sl s s o

147 cpm/mrem /hr
DYSPROSIUI

= 100) H
5[Z
alz =
(2 e i
E [ 76.0 cpm/mrem/hr |
> INDIUM e
=
= -
=
5
<
3 10
I}
2
: | HiE
ool 010 10
NEUTRON ENERGY -MeV
235-922

Fig. 6. Summed Inner Foil-array Activity,
Showing Sensitivity Variation with
Energy and Foil Material
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in Figs. 5 and 6 to determine the sensitivity figures to be utilized with each
array. A corrected fluence and dose equivalent then may be computed from
the original foil-activity data.

[ —MREM/HR PER UNIT FLUX-NBS 63 ~
[ ---—BRAMLETT, EWING, BONNER THEORY AND 1
bio EXPERIMENT-12" POLYETHYLENE - 7%°
P NORMALIZED DATA b ik

= I a4 HANKINS - THEORY, 10" POLYETHYLENE - / E
2 F NORMALIZED DATA 8 Sl o Fig. 7
= [ © REPORTED HERE —12" PARAFFIN /! i 5
z Ik 4 e Comparison of Response Charac-
& r = teristics of Three Spherical Neu-
= L A 5 tron Detectors (in central
@ 00! —Hioa . " 7 .
I L i dosimetric region) with Accepted
= r %8S RBE Dose Rate Function
w ]
= 3 8

[ a ]

0,001 1'1 1 1 1 I 1 I | | ol
Paot 10® 10 102 103 0% 0% 105 107
NEUTRON ENERGY -eV

235-923

The accuracy that can be
achieved dependsonanumber of fac- GoEEE
tors, among them: b

1. the accuracy of the basic
monoenergetic neutron calibration;

2. the accuracy of the de-
termination of foil activity;

¥
INDIUM
+ DYSPROSIUM =

3. thenature of the neutron-
energy distribution.

o.10

NEUTRON ENERGY-MeV

In principle, the errors due to
the first two factors can be reduced
tonegligible proportions. Our exper- o.0b = LS
ience indicates that an accuracy of il
10 percent in determination of fluence
and dose equivalent can be achieved
for monoenergetic beams at typical
"tolerance" levels, provided the basic
calibration curve is deemed to be
exact. If neutrons are not mono-
energetic, as is usually the case in
practical measurements, there will be an unavoidable error caused by a
weighting of the actual neutron spectrum by the response of the instrument
before the average is struck. However, having determined the detector
response to monoenergetic neutrons, it is possible to prepare response
curves for application to "flat," l/E, Gaussian, and other spectra.

235-919

Fig. 8. Ratio of Outer to Inner Foil-array
Activities. The derived neutron
energy is the true value for a mono-
energetic source or an effective value
for other types of spectra.
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APPLICATION

The first and current application of the instrument is the monitoring
of radiation in the environs of the Argonne Zero Gradient Synchrotron, a
pulsed source of 12.6-BeV protons. Thus far, two foil versions of the de-
tector have been fabricated. The first design accepts flat foils up to 2 in. in
diameter and has been used with both indium and dysprosium. The second
design accepts silver-wrapped GM tubes. Direct calibration has so far been
accomplished for only the flat-foil type, using indium and dysprosium. Great
advantage has been found in the fact that the thermal activation foils are in-
vulnerable to the high instantaneous dose rates of the pulsed accelerator
beam. Furthermore, the integrating nature of the foils affords adequate sen-
sitivity for a wide range of area-monitoring applications.
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